157 | 0 | 25 |
下载次数 | 被引频次 | 阅读次数 |
采用一步水热法制备不同浓度Ni掺杂SnO2材料,并对所制备材料进行XRD、XPS、SEM表征,结果表明成功制备了纯SnO2和不同浓度Ni掺杂SnO2的纳米材料。然后将材料制作为气体传感器进行气敏测试,结果表明1%Ni掺杂SnO2的气体传感器性能最佳,在200℃时对50 ppm乙醇的响应为91,比纯SnO2气体传感器最佳工作温度降低20℃,响应提升3.1倍
Abstract:Here, Ni-doped SnO2 materials are perapred by one-step hydrothermal. Through the XRD, XPS and SEM surface features, the results indicate the pure SnO2 and different Ni-doped SnO2 are successful preparation.Then, the material is then fabricated as a gas sensor for gas-sensitive testing. For the gas sensor with 1% Ni-doped SnO2, the optimal operating temperature is 200 ℃, the response reaches 91 to 50 ppm ethanol. The optimal operating temperature is 20 ℃ lower than the pure SnO2 gas sensor, and the response is increased by 2.1 times.
[1] Wang L W, Kang Y F, Liu X H, et al. ZnO nanorod gas sensor for ethanol detection[J]. Sensors and Actuators B:Chemical, 2012, 162(1):237-243.
[2] Mirzaei A, Janghorban K, Hashemi B, et al. Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by Pechini sol-gel method[J]. Ceramics International, 2016, 42(5):6136-6144
[3] Barsan N, Koziej D, Weimar U. Metal oxide-based gas sensor research:How to?[J]. Sensors and Actuators B:Chemical, 2007, 121(1):18-35.
[4] Liu Y M, Li X, Wang Y L, et al. Hydrothermal synthesis of Au@SnO2 hierarchical hollow microspheres for ethanol detection[J]. Sensors and Actuators B:Chemical,2020, 319:128299.
[5] Xu S, Gao J, Wang L L, et al. Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature[J]. Nanoscale, 2015, 7(35):14643-14651.
[6] Hao P, Qiu G, Song P, et al. Construction of porous LaFeO3 microspheres decorated with NiO nanosheets for high response ethanol gas sensors[J]. Applied Surface Science, 2020, 515:146025
[7] Gong F L, Peng M X, Yue L J, et al. Design of p-n heterojunction on mesoporous ZnO/Co3O4 nanosheets for triethylamine sensor[J]. Chemical Physics Letters, 2021,779:138891.
[8] Wang Y, Zhang S Y, Xiao D K, et al. CuO/WO3 hollow microsphere PN heterojunction sensor for continuous cycle detection of H2S gas[J]. Sensors and Actuators B:Chemical, 2023, 374:132823
[9] Deng X L, Zhang L L, Guo J, et al. ZnO enhanced NiObased gas sensors towards ethanol[J]. Materials Research Bulletin, 2017, 90:170-174.
[10] Nassiri C, Hadri A, Chafi F Z, et al. Structural, optical and electrical properties of Fe doped Sn O2 prepared by spray pyrolysis[J]. Journal of Material and Environmental Science, 2017, 8(2):420-425.
[11] Bhardwaj N, Pandey A, Satpati B, et al. Enhanced CO gas sensing properties of Cu doped Sn O2 nanostructures prepared by a facile wet chemical method[J]. Physical Chemistry Chemical Physics, 2016, 18(28):18846-18854.
[12] Wang D, Zhang M L, Chen Z L, et al. Enhanced formaldehyde sensing properties of hollow SnO2nanofibers by graphene oxide[J]. Sensors and Actuators B:Chemical, 2017, 250:533-542.
[13] Meng D, Liu D Y, Wang G S, et al. Low-temperature formaldehyde gas sensors based on NiO-SnO2heterojunction microflowers assembled by thin porous nanosheets[J]. Sensors and Actuators B:Chemical, 2018,273:418-428.
[14] Hemmati S, Firooz A A, Khodadadi A A, et al.Nanostructured SnO2-ZnO sensors:Highly sensitive and selective to ethanol[J]. Sensors and Actuators B:Chemical, 2011, 160(1):1298-1303.
[15] Li B, Liu J Y, Liu Q, et al. Core-shell structure of Zn O/Co3O4 composites derived from bimetallic-organic frameworks with superior sensing performance for ethanol gas[J]. Applied Surface Science, 2019, 475:700-709.
[16] Yuan X L, Sun L X, Wang J Q, et al. Metal organic frameworks derived SnO2 microsphere doped Ag for monitoring low concentration ethanol[J]. Materials Science in Semiconductor Processing, 2021, 136:106110.
基本信息:
DOI:10.20203/j.cnki.2095-8919.2025.01.010
中图分类号:TQ223.122;TP212
引用信息:
[1]温良存,张玉红,刘航.镍掺杂二氧化锡乙醇传感器设计研究[J].吉林建筑大学学报,2025,42(01):75-81.DOI:10.20203/j.cnki.2095-8919.2025.01.010.
基金信息:
吉林省科技发展计划项目(20200403072SF)