nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.42 68-74
未冻水含量对非饱和粉质黏土抗剪强度影响研究
基金项目(Foundation): 吉林省教育厅科学技术研究项目(JJKH20240384KJ); 吉林省科技发展计划项目(YDZJ202201ZYTS490); 第七届中国科协青年人才托举工程(2021QNRC001)
邮箱(Email): guohaotian@163.com;
DOI: 10.20203/j.cnki.2095-8919.2025.01.009
摘要:

以典型季冻区的非饱和粉质黏土为研究对象,利用核磁共振试验系统及GDS非饱和土三轴测试系统,在不同温度条件下,考虑未冻水含量的变化,对不同初始基质吸力土样强度特性进行试验研究。研究结果表明:同一初始基质吸力条件下,随温度的降低未冻水含量下降,同一温度条件下,随基质吸力的增加未冻水含量降低。非饱和冻土在冻结过程中体积未冻水含量的变化可分为过冷阶段(0~-1℃)、快速冻结阶段(-1~-7℃)、稳定冻结阶段(-7~-17℃)。随着温度的降低,不同基质吸力土样的总黏聚力均随未冻水含量的降低呈折线形增大。温度高于-5℃时,随基质吸力的增加,总黏聚力变化与未冻水含量呈反比;温度低于-10℃时,随基质吸力的增加,总黏聚力变化与未冻水含量呈正比。随温度的降低,基质吸力为100 kPa、200 kPa时,有效内摩擦角随未冻水含量的增加而增加。温度一定时,随基质吸力的增加,有效内摩擦角随未冻水含量增大呈先减后增趋势。

Abstract:

Taken unsaturated silty clay in typical seasonal freezing areas as the research object, used nuclear magnetic resonance testing system and GDS unsaturated soil triaxial testing system, the strength characteristics of soil samples with different initial matric suction were experimentally studied under different temperature conditions, considering the changes in unfrozen water content. The research results indicate that under the same initial matric suction conditions,the unfrozen water content decreases with decreasing temperature, and under the same temperature conditions, the unfrozen water content decreases with increasing matric suction. The changes in volume unfrozen water content of unsaturated frozen soil during the freezing process can be divided into supercooling stage(0~-1 ℃), rapid freezing stage(-1~-7 ℃), and stable freezing stage(-7~-17 ℃). As the temperature decreases, the total cohesion of soil samples with different matric suction increases in a linear pattern with the decrease of unfrozen water content. When the temperature is above-5 ℃, the total cohesion changes inversely with the unfrozen water content as the matric suction increases. When the temperature is below-10 ℃, the change in total cohesion is proportional to the unfrozen water content as the matric suction increases. As the temperature decreases, the effective internal friction angle increases with the increase of unfrozen water content when the matric suction is 100 kPa and 200 kPa. When the temperature is constant, with the increase of matric suction, the effective internal friction angle shows a trend of first decreasing and then increasing with the increase of unfrozen water content.

参考文献

[1] Kozlowski T. A comprehensive method of determining the soil unfrozen water curves:2. Stages of the phase change process in frozen soil-water system[J]. Cold Regions Science and Technology, 2003, 36(1-3):81-92.

[2]李顺群,高凌霞,柴寿喜.冻土力学性质影响因素的显著性和交互作用研究[J].岩土力学, 2012, 33(4):1173-1177.

[3] Meng Q, Li D, Chen J, et al. Experimental research on physical-mechanical characteristics of frozen soil based on ultrasonic technique[C]//International Conference on Permafrost(ICOP)Procecdings. American:American Geosciences Institute, 2008, 2:1179-1183.

[4] Bronfenbrener L, Korin E. Experimental studies of water crystallization in porous media[J]. Chemical Engineering and Processing:Process Intensification,2002, 41(4):357-363.

[5]冷毅飞,张喜发,杨凤学,等.冻土未冻水含量的量热法试验研究[J].岩土力学, 2010, 31(12):3758-3764.

[6] Anderson D M, Pusch R, Penner E. Physical and thermal properties of frozen ground[M]//Geotechnical Engineering for Cold Regions New York:McGraw-Hill College, 1978:37-102.

[7] Azmatcha T F, Sego D C, Arenson L U, et al. Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils:Exploration drilling in the Canadian High Artic[J]. Cold Regions Science and Technology, 2012, 83-84:103-109.

[8]王国尚,金会军,林清.时域反射仪在寒区冻融土参数测试中的应用[J].冰川冻土, 1998, 20(1):89-93.

[9]李东阳.冻土未冻水含量测试新方法的试验和理论研究[D].北京:中国矿业大学, 2011.

[10] Wen Z, Ma W, Feng W J, et al. Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibetan silty clay[J]. Environmental Earth Sciences, 2012, 66(5):1467-1476.

[11]路建国,张明义,张熙胤,等.冻融过程中未冻水含量及冻结温度的试验研究[J].岩石力学与工程学报, 2017,36(7):1803-1812.

[12]晏长根,王婷,贾海梁,等.冻融过程中未冻水含量对非饱和粉土抗剪强度的影响[J].岩石力学与工程学报,2019, 38(6):1252-1260.

[13]王双林,郭颖,单炜,等.基于差示扫描量热法的冻土冻融过程未冻水含量计算模型[J].科学技术与工程,2020, 20(12):4818-4825.

[14]寇璟媛,马新岩,滕继东,等.基于孔隙结构的土体未冻水含量滞回效应研究[J].中国公路学报, 2020, 33(9):115-125.

[15]杨锡熠,单炜,郭颖,等.基于差示扫描量热法的哈尔滨黏土未冻水含量特性[J].科学技术与工程, 2023, 23(9):3925-3936.

[16]中华人民共和国水利部.土工试验方法标准:GB/T50123—2019[S].北京:中国计划出版社, 2019.

[17]刘振亚,刘建坤,李旭,等.毛细黏聚与冰胶结作用对非饱和粉质黏土冻结强度及变形特性的影响[J].岩石力学与工程学报, 2018, 37(6):1551-1559.

基本信息:

DOI:10.20203/j.cnki.2095-8919.2025.01.009

中图分类号:TU442

引用信息:

[1]郭浩天,王笑,赵环宇等.未冻水含量对非饱和粉质黏土抗剪强度影响研究[J].吉林建筑大学学报,2025,42(01):68-74.DOI:10.20203/j.cnki.2095-8919.2025.01.009.

基金信息:

吉林省教育厅科学技术研究项目(JJKH20240384KJ); 吉林省科技发展计划项目(YDZJ202201ZYTS490); 第七届中国科协青年人才托举工程(2021QNRC001)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文