nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.42 35-43
渣土改良的流动性土性能试验研究
基金项目(Foundation): 河南省科技研发计划联合基金资助项目(222103810075); 河南工业大学创新基金支持计划专项资助(2022ZKCJ07)
邮箱(Email): zengcnv@126.com;
DOI: 10.20203/j.cnki.2095-8919.2025.01.005
摘要:

我国挖方废弃渣土的改良对于资源循环、绿色环保尤为重要。自密实流动土可作为一种理想的盾构渣土改良目标。针对郑州地区产生的挖方废弃渣土进行改良处理。采用渣土、水泥、泡沫以及活性氧化镁作为原材料,其中活性氧化镁和泡沫二者混合掺加来协同改良渣土,取得了明显的改良效果。通过调整泡沫掺量和氧化镁掺量调配出流动度和泌水率符合要求的流动化回填土。通过图像三轴试验分析固化试样后的应力-应变关系、云图变形的变化规律。结果表明:在3%泡沫掺量和3%活性氧化镁掺量下,改良效果最好,其流动性和力学性能均满足相关规范要求。试验制备出流动度为200~320 mm,泌水率整体不超过5%,28 d抗压强度在0.3~0.75 MPa范围内的流动性回填土,这对挖方废弃渣土的合理配置和资源的有效利用提供了合理的依据。

Abstract:

The improvement of our excavation waste soil is particularly important for resource recycling and greening. Self compacting flowable soils can be an ideal target for shield spoil improvement. It is aimed at improving the treatment of excavation waste sludge produced by shield structure in Zhengzhou area. The material was made of slag soil, cement, rosin-type plant foamer and activated magnesium oxide. Where the active magnesium oxide and foamer both mixed and blended to collaboratively improved the slag soil, achieved significant improvements. Fluidized backfill with satisfactory fluidity and bleeding rate was prepared by adjusting the content of foam and magnesium oxide. The stress-strain relationship and the variation of nephogram deformation were analyzed by image triaxial test. It was shown that at 3% and 5% foam dosing and 3% active magnesium oxide dosing, it was optimal for improving the flowability and mechanical properties of the mix. Test preparation of mobility of 200~320 mm, the overall water secretion rate does not exceed 5%, 28 d compressive strength in the range of 0.3~0.75 MPa flow engineering soil. This provides a rational basis for the rational allocation of excavated waste spoils, as well as the effective utilization of resources.

参考文献

[1]陈哲宁.建筑废弃物再生冗余土制备预拌流态固化土及性能研究[J].水泥工程, 2022(5):63-68.

[2]张金喜,雷霆,宋波,等.含膨润土建筑垃圾流动性回填材料的性能研究[J].市政技术, 2017, 35(6):173-175.

[3]平洋,李强,王强勋,等.渣土类建筑垃圾的资源化利用技术研究与应用[J].建筑技术, 2023, 54(2):239-241.

[4]魏建军,张金喜,王建刚.建筑垃圾细料生产流动化回填材料的性能[J].土木建筑与环境工程, 2016, 38(3):96-103.

[5]郭卫社,王百泉,李沿宗,等.盾构渣土无害化处理、资源化利用现状与展望[J].隧道建设(中英文), 2020, 40(8):1101-1112.

[6]马强.预拌流态固化土基坑肥槽回填技术应用[J].建筑技术开发, 2023, 50(1):155-157.

[7]万敏,汪涛,陶后兴,等.流态土沟槽埋管回填材料对管道浮力的试验研究[J].中国市政工程, 2022(4):64-67,124-125.

[8]蒲聪聪,花开慧,高品海,等.盾构渣土资源化处置研究进展[J].现代技术陶瓷, 2022, 43(4):270-281.

[9]朱伟,赵笛,范惜辉,等.渣土改良为流动化回填土的应用[J].河海大学学报(自然科学版), 2021, 49(2):134-139.

[10]朱浩泽,于峰泉,耿健,等.钛石膏基可控低强度材料强度及体积稳定性研究[J].硅酸盐通报, 2021, 40(11):3644-3653.

[11] Wang C H, Li Y D, Wen P H, et al. A comprehensive review on mechanical properties of green controlled low strength materials[J]. Construction and Building Materials, 2023, 363:129611.

[12]杜衍庆,王新岐,曾伟,等.道路用流态固化土的基本性质与工程实践[J].天津建设科技, 2021, 31(3):12-15.

[13]王艳,杨虎,杨满满,等.黄泛区地铁渣土制备高流动土试验研究[J].地球科学, 2022, 47(12):4698-4709.

[14]王新岐,邵捷,问鹏辉,等.绿色可控低强材料组成与工作性能研究进展[J].硅酸盐通报,2023, 42(7):2629-2644.

[15] Jiao N, Ding J W, Wan X,et al. Mechanical properties and micro-mechanism of improved shield tunnel muck with phosphogypsum and lime[J]. Construction and Building Materials, 2024, 411:134437.

[16] Wang X, Wen Z, Liu K Q, et al. Experimental study on the workability of sands conditioned with bentonite-silty clay modified slurry[J]. Construction and Building Materials, 2024, 439:137352.

[17] Ling T C, Kaliyavaradhan S K, POON C S. Global perspective on application of controlled low-strength material(CLSM)for trench backfilling—An overview[J].Construction and Building Materials, 2018, 158:535-548.

[18]中华人民共和国住房和城乡建设部.土工试验方法标准:GB/T 50123-2019.[S].北京:中国计划出版社, 2019.

[19]中华人民共和国交通运输部.公路工程水泥及水泥混凝土试验规程:JTG 3420—2020.[S].北京:人民交通出版社, 2020.

[20]吴成皓.活性氧化镁在注浆加固软基中的影响分析[D].宜昌:三峡大学, 2020.

[21]中华人民共和国住房和城乡建设部.水泥土配合比设计规程:JGJ/T 233—2011.[S].北京:中国建筑工业出版社, 2011.

[22]曹硕倩.基于渣土的流动性工程土性能试验研究[D].郑州:河南工业大学, 2023.

基本信息:

DOI:10.20203/j.cnki.2095-8919.2025.01.005

中图分类号:TU41

引用信息:

[1]曾长女,孙江腾,曹硕倩等.渣土改良的流动性土性能试验研究[J].吉林建筑大学学报,2025,42(01):35-43.DOI:10.20203/j.cnki.2095-8919.2025.01.005.

基金信息:

河南省科技研发计划联合基金资助项目(222103810075); 河南工业大学创新基金支持计划专项资助(2022ZKCJ07)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文