92 | 0 | 121 |
下载次数 | 被引频次 | 阅读次数 |
土壤水分是评估地表旱情最直接的环境指标。以海南省文昌市沿海地区为研究区,构建雷达后向散射耦合模型,发展适用于海水倒灌地区的土壤水分反演算法。结合水云模型和裸土后向散射模型构建后向散射耦合模型,选取4种植被指数构建植被含水量估算模型。实验随机选取50%的地面实测数据,结合高分辨率三号(GF-3)卫星数据对后向散射耦合模型进行参数化,利用余下的50%实测数据进行后向散射系数的模拟,并与卫星提取的后向散射系数之间构建代价函数,采用最小二乘法实现土壤水分和地表粗糙度的协同反演。结果显示,土壤水分和地表粗糙度的反演精度R分别为0.470和0.562,RMSE分别为0.022 cm3/cm3和0.071 cm,Bias分别为-0.001 cm3/cm3和-0.003 cm。该研究对于昼夜温差大、风速快的沿海地区的土壤水分和地表粗糙度反演具有参考价值。
Abstract:Soil moisture is the most direct environmental index to evaluate surface drought. Taken the coastal area of Wenchang City, Hainan Province as the research area, and the coupled model of radar backscattering is constructed, and the soil moisture inversion algorithm suitable for seawater intrusion area is developed.Combined with water cloud model and bare soil backscattering model, a coupled backscattering model was constructed, and four vegetation indices were selected to construct a vegetation water content estimation model. In the experiment, 50% of the measured data on the ground were randomly selected, and the coupled backscattering model was parameterized with the high-resolution GF-3 satellite data. The backscattering coefficient was simulated with the remaining 50% of the measured data, and the cost function was constructed with the backscattering coefficient extracted by the satellite. The cooperative inversion of soil moisture and surface roughness was realized by the least square method. The results indicated that the inversion accuracies for soil moisture and surface roughness achieved R values of 0.470 and 0.562, RMSE values of 0.022 cm3/cm3 and 0.071 cm, and Bias values of-0.001 cm3/cm3 and-0.003 cm, respectively. This study provides valuable insights for the inversion of soil moisture and surface roughness, particularly in coastal regions characterized by large diurnal temperature variations and high wind speeds.
[1] Gao Y,Gao M F,Wang L G, et al. Soil moisture retrieval over a vegetation-covered area using ALO-S2 L-band synthetic aperture radar data[J]. Remote Se-nsing, 2021,13(19):3894.
[2] Huang S, Ding J L, Liu B H, et al. The capability of integr-ating optical and microwave data for detecting soil m-oisture in an oasis region[J]. Remote Sensing, 2020, 12(9):1358.
[3] Xing M F, Chen L, Wang J F, et al. Soil moisture retrievalusing sar backscattering ratio method during the crop growing season[J]. Remote Sensing, 2022, 14(13):3210.
[4]余凡,韩颜顺,顾海燕.科学探究的金钥匙——光学与雷达遥感协同反演地表土壤水分的方法[J].科技创新与品牌,2015, 12:53-54.
[5]白晓静.基于多波段多极化SAR数据的草原地表土壤水分反演方法研究[D].成都:电子科技大学,2017.
[6] Attema E P W, Ulaby F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2):357-364.
[7] Zribi M, Dechambre M. A new empirical model to retrieve soil moisture and roughness from C-band radar data[J].Remote Sensing of Environment, 2003, 84(1):42-52.
[8] Zribi M, Gorrab A, Baghdadi N. A new soil roughness parameter for the modelling of radar backscattering over bare soil[J]. Remote Sensing of Environment, 2014, 152:62-73.
[9]孙亚勇.基于C和L波段主被动微波遥感的土壤水分协同反演研究[D].北京:中国水利水电科学研究院,2018.
[10]王锡刚.基于水云模型标定的土壤水分反演研究[D].长春:吉林大学,2023.
[11] Ulaby F T, Moore R K, Fung A K. Microwave remote sensing:Active and passive. Volume 1—Microwave remote sensing fundamentals and radiometry[M]. U. S.:Legacy CDMS, 1981.
[12]崔家鹤.典型草原不同植被条件下土壤水分遥感反演研究——基于放牧控制实验[D].呼和浩特:内蒙古大学,2023.
[13] Bai X J, Zheng D H, Liu X Z, et al. Simulation of Sentinel-1A observations and constraint of water cloud model at the regional scale using a discrete scattering model[J].Remote Sensing of Environment, 2022, 283:113308.
[14] Bindlish R, Barros A P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation[J].Remote Sensing of Environment, 2001, 76(1):130-137.
[15]李洋洋.集成光学与微波遥感苏打盐碱地水盐含量反演方法研究[D].长春:中国科学院研究生院(东北地理与农业生态研究所),2014.
[16]任鑫.多极化、多角度SAR土壤水分反演算法研究[D].北京:中国科学院研究生院(遥感应用研究所),2004.
基本信息:
DOI:10.20203/j.cnki.2095-8919.2025.01.002
中图分类号:P237;S812.2
引用信息:
[1]翁昊哲,陈思,郭君达等.基于后向散射耦合模型和高分数据的草地土壤水分反演[J].吉林建筑大学学报,2025,42(01):8-16.DOI:10.20203/j.cnki.2095-8919.2025.01.002.
基金信息:
国家自然科学基金项目(42201435); 国家民用基础设施陆地观测卫星共性支撑平台(CASPLOS-CCSI); 吉林省科技发展计划项目(YDZJ202301ZYTS230); 吉林省教育厅科学技术研究项目(JJKH20220259KJ)